nanopore read assessment
With your nanopore reads stored on a suitable machine, you can analyze them with several phylochemistry
functions. Here is a quick overview:
qc_data <- fastxQC(
paths_to_fastxs = c(
"/Users/bust0037/Documents/Science/Websites/thebustalab.github.io/data/example.fastq",
"/Users/bust0037/Documents/Science/Websites/thebustalab.github.io/data/example2.fastq"
),
type = "fasta",
mode = "slow",
max_n_seqs = 1000
)
head(qc_data)
qc_data %>%
mutate(category = case_when(
length > mean(qc_data$length)*5 ~ "chromosome",
length <= mean(qc_data$length)*5 ~ "leftover_bit"
)) %>%
ggplot() +
geom_treemap(aes(area = length, fill = category), color = "black", size = 1) +
scale_fill_manual(values = c("gold", "maroon"))