templates

6.6 matrix analyses

6.6.1 basic runMatrixAnalysis() template


runMatrixAnalysis(
                
  data = NULL,

  analysis = c("hclust", "pca", "pca_ord", "pca_dim"),

  column_w_names_of_multiple_analytes = NULL,
  column_w_values_for_multiple_analytes = NULL,
    
  columns_w_values_for_single_analyte = NULL,

  columns_w_sample_ID_info = NULL

)

6.6.2 advanced runMatrixAnalysis() template


runMatrixAnalysis(
  data, # data to use for analysis
  analysis = c(
      "pca", "pca_ord", "pca_dim", # PCA
      "mca", "mca_ord", "mca_dim", # MCA (PCA on categorical data)
      "mds", "mds_ord", "mds_dim", # MDS
      "tsne", "dbscan", "kmeans", # Clustering
      "hclust", "hclust_phylo" # Hierarchical clustering
  ),
  parameters = NULL,
  column_w_names_of_multiple_analytes = NULL,
  column_w_values_for_multiple_analytes = NULL,
  columns_w_values_for_single_analyte = NULL,
  columns_w_additional_analyte_info = NULL,
  columns_w_sample_ID_info = NULL,
  transpose = FALSE, # default = FALSE, this chooses whether to transpose the data
  distance_method = c( # the distance metric to use in computing a distance matrix
    "euclidean", "maximum",
    "manhattan", "canberra",
    "binary", "minkowski",
    "coeff_unlike"
  ),
  agglomeration_method = c( # the clustering method to use in heirarchical clustering
      "ward.D2", "ward.D", "single", "complete",
      "average", # (= UPGMA)
      "mcquitty", # (= WPGMA)
      "median", # (= WPGMC)
      "centroid" # (= UPGMC)
  ),
  unknown_sample_ID_info = NULL,
  components_to_return = 2, # how many principal components to return
  scale_variance = NULL, ## default = TRUE, except for hclust, then default = FALSE
  na_replacement = c("mean", "none", "zero", "drop"), # default = "mean", this chooses what to do with missing values
  output_format = c("wide", "long"), # default = "wide", this chooses whether to output a wide or long format
)